Geodesics of Random Riemannian Metrics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemannian metrics having the same geodesics with Berwald metrics

In Theorem 1, we generalize the results of Szabó [Sz1, Sz2] for Berwald metrics that are not necessary strictly convex: we show that for every Berwald metric F there always exists a Riemannian metric affine equivalent to F . Further, we investigate geodesic equivalence of Berwald metrics. Theorem 2 gives a system of PDE that has a (nontrivial) solution if and only if the given essentially Berwa...

متن کامل

Riemannian metrics having common geodesics with Berwald metrics

In Theorem 1, we generalize some results of Szabó [Sz1, Sz2] for Berwald metrics that are not necessarily strictly convex: we show that for every Berwald metric F there always exists a Riemannian metric affine equivalent to F . As an application we show (Corollary 3) that every Berwald projectively flat metric is a Minkowski metric; this statement is a “Berwald” version of Hilbert’s 4th problem...

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

Cusp Excursions of Random Geodesics in Weil-petersson Type Metrics

We consider Weil-Petersson type incomplete metrics on orientable surfaces of finite type. We analyse cusp excursions of random geodesics proving bounds for maximal excursions.

متن کامل

Pseudo-Riemannian geodesics and billiards

In pseudo-Riemannian geometry the spaces of space-like and timelike geodesics on a pseudo-Riemannian manifold have natural symplectic structures (just like in the Riemannian case), while the space of light-like geodesics has a natural contact structure. Furthermore, the space of all geodesics has a structure of a Jacobi manifold. We describe the geometry of these structures and their generaliza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2014

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-014-1901-8